
Hackerone Bug Bounty Report: Modification of Assumed

Immutable Data (M.A.I.D) on the Hinge Dating Application
Abusing default settings in the Cloudinary Image Transformation API

Tyler Butler

Figure 1: Bug Bounty Details

Abstract
Hinge is dating application for android and iOS devices

launched in 2013. Like its competitors Tinder and

Bumble, it enables users to search through a database of

other users and match with potential dating partners.

Offering features to create unique profiles, integrate with

existing social platforms, and chat with other users, it

uses a mixture of proprietary code and third-party

services. This report outlines a low risk misconfiguration

disclosed to Hinge through Hackerone in March of 2020

by Tyler Butler and triaged in June 2020. Hackerone is a

bug bounty platform that connects freelance security

researchers with clients to enable public and private

security vulnerability disclosure1.

 The report outlines a potential vulnerability by

exploiting improper media access controls in a third-

party media storage provider used by Hinge. By abusing

the default configuration of the Cloudinary Image

Transformation API, original user images could be

accessed in their original and unedited state. This posed

a minimal risk to users who intend to use the crop feature

to remove undesirable and potentially sensitive aspects of

profile photos. While is unlikely that leaving the

application in its disclosed state would result in

widespread sensitive information leak, Hinge decided to

triage the application to mitigate the risks involved. To

exploit the flaw on a large scale, an attacker would need

a highly customized script to automate and identify

vulnerable users.

Scope
This report is constrained only to the Hinge iOS

application (app-id 595287172), the hinge.app.link

subdomain, and the hinge-res.cloudinary subdomain.

While the security settings exploited in the Hackerone

report applies to the Android app as well, it will not be

discussed.

1 The Most Trusted Hacker-Powered Security Platform. (n.d.). Retrieved June 17,
2020, from https://www.hackerone.com/

Testing Approach
The general approach to the security analysis conducted

in this report involved two main steps. First, Burpsuite

was used to intercept network traffic sent between a

sample iPhone and the Hinge HTTP and HTTPS API

endpoints. Burpsuite is an application security testing

software produced by Portswigger. Intercepted traffic

was dissected by endpoint, and manually analyzed.

Second, the application was used on an iPhone as a

normal user. Features which exposed endpoints were

tested and all external links were collected and analyzed.

To protect Hinge user’s personal information, exploit

POC documentation included in this report uses sample

Cloudinary assets not associated with Hinge.

Application Design
The Hinge platform consists of native applications for

both android and iOS devices. In addition to integration

with the Facebook-owned social media platform

Instagram, there are also several third-party Software as

a Service (SaaS) providers used to supplement custom

development. According to data analyzed from

BurpSuite packet captures Hinge uses SendBird, a chat

as a service platform; Braze, a CRM and marketing

platform; and Branch, a mobile measurement and deep-

link solution platform.

 Central to application is the ability for users to create

custom profiles using a mixture of user-uploaded images,

captions, questionnaire answers, and link to their

Instagram feed. Storage of user images is done through

Software as a Service (SaaS) provider, Cloudinary. Users

are required to upload six images when first creating an

account, and the first image displayed on the profile is

used as the user’s profile picture.

Third Party Services
Cloudinary

The Cloudinary platform offers image, video, asset, and

media management solutions for developers and e-

commerce2. It is used in photo-heavy applications

because of its easy to use API. Best summed up on the

Cloudinary website, the API enables users to,

“apply artistic effects to an image or to simply scale it.

With simple system of chained transformations, you can

crop, scale, transcode, filter, and optimize your original

high-resolution images on the fly. Tailor transformations

2 Image and Video Management Solutions | Cloudinary. (n.d.). Retrieved June 17,
2020, from https://cloudinary.com/solutions

Platform HackerOne

Client Hinge

Title Profile Photo URL Manipulation Enables Modification

of Assumed-Immutable Data

Severity Low (3.7)

Weakness Modification of Assumed-Immutable Data (MAID)

Bounty $250

https://www.hackerone.com/

based on conditional parameters or the viewing context

to deliver the most appropriate version to users”3.

 The ability to dynamically display assets based on

conditions means that assets can be displayed optimally

regardless of their environment. This can commonly be

seen in the use of thumbnail images. When the image

needs to be displayed as a thumbnail or icon, it will

dynamically be optimized to retain its essential aspects

despite being reduced in size. Cloudinary clients include

Buzzfeed, CNN, and Uber among others.

Cloudinary Image Transformation API
Transform Parameters

Each asset in the Cloudinary media library is given a

unique public ID and is accessible through their website

at the cloudinary.com/image/upload directory.

Cloudinary uses dynamic URL’s to apply effects to

images on its platform. To apply effects, transformation

parameters can be appended to the address of the asset.

In total, 33 different transformation parameters can be

used for a variety of purposes such as changing height

and width, effects, backgrounds, and custom functions

among others.4 An example of a transformed image on

Hinge looks like the following,

“https://hinge-

res.cloudinary.com/image/upload/x_0.18,y_0.21,w_0.36

,h_0.27,c_crop/w_1055,q_auto/f_webp/[profile

number]/[unique profile id].jpg”

 When users make a change to an image hosted on

Cloudinary, new transformation requests are added on

the fly. Original image assets themselves are not

changed, however, transformation parameters applied to

the request URL change what is displayed when

requested. This distinction means that both the original

asset as it was uploaded to the platform as well as the new

requested URL with transformations are able to be

requested and exist available to the public. This is an

intended function of Cloudinary and a default setting,

however, this can be changed through the enforcement of

Media Access Controls such as Strict Transformation

and Signed Delivery URLS5.

Media Access Controls

 One media access control method to mitigate the risk

of user requested transformations is Strict

Transformations. Through this feature, application

owners can explicitly define which, if any,

transformations can be requested by users. Another

access control method is the Signed Delivery URL option.

With this option, images are validated using a URL

3 Image Manipulation | Cloudinary Features. (n.d.). Retrieved June 17, 2020, from

https://cloudinary.com/features/image_manipulation

4 Image transformations. (n.d.). Retrieved June 17, 2020, from

https://cloudinary.com/documentation/image_transformations

signature which is a base64 encoding of a SHA1 digest

made from the application owners image ID and

transformation string chained with the API secret. Only

images which pass authentication can be viewed,

meaning access to images can be controlled for

private/authenticated viewing or manipulation.

Vulnerability Discovery
The risk described in this report and submitted to Hinge

relies on the lack of use of media access controls on

user images. In fact, by default, no access controls are

implemented on the Cloudinary platform. In effect, this

means that any asset uploaded to the platform should be

accessible in its original state regardless of what users

cropped out in the app. To exploit these settings, the

URL address of user profile pictures needed to be

located. This was achieved using the iOS app “share

profile” option. This feature enables users to share

profiles with others. The feature generates a standard

message, “I recommended [Username] for you on

Hinge! Log into the app to view their profile”, as well as

a URL link to the user’s profile with the format,

“https://app.hinge.co/[User profile ID]” .

 When shared through SMS messaging and opened on

mobile devices with Hinge installed, the link triggers

the application to open. If Hinge is not installed, the

user will be re-directed to the app store. Users are

automatically guided in this way from the use of iOS

deep links, a feature implement for iOS in 20096.

Figure 2 shows the hinge.co subdomain which hosts the

Universal Link json file necessary for such

configurations. User profiles are also able to be viewed

with a browser. Browser-based Hinge profiles feature

only the username, a comment, and a profile photo.

Browser access to the user profile photo allowed for

easy access to the custom Hinge Cloudinary domain,

hinge-res.cloudinary.com.

5 Media access control. (n.d.). Retrieved June 17, 2020, from

https://cloudinary.com/documentation/control_access_to_media

6 Universal Links - Apple Developer. (n.d.). Retrieved June 17, 2020, from

https://developer.apple.com/iOS/universal-links/

As seen in Figure 3, profile pictures are loaded into the

browser-based profile page through the hinge-res

subdomain of Cloudinary. The URL extension,

including the various tags denoted with backspaces, are

a part of the Cloudinary Image Transformation API.

Exploiting the Transform API
With no media access controls in place, exploitation of

the transform API is fairly straight forward. By

removing the transformation parameters to the GET

request URL, the original asset can be seen as it was

uploaded by the user.

Risks
The risks involved in leaving original user assets

available publicly are low. Hackerone classified this

finding as a 3.7 on Hackerone’s severity scale. Still, some

of the findings using this method to view original images

were interesting. Some user’s uploaded screenshots of

their personal mobile devices, and only after upload

edited the image to zoom in on a face or body. The full

screen shot exposed other information about those users.

In one example, a screenshot of the users Instagram

profile revealed their name and Instagram handle. Other

users uploaded images in various stages of undress and

used the crop feature to crop out features other than their

face. Commonly, many users used the crop feature to

crop themselves out of images with others, including

large group photo’s or photos with significant others.

7 MAID Test [Digital image]. (n.d.). Retrieved from https://res.cloudinary.com/maid-

test/image/upload/c_crop,w_461,x_190,y_0/v1587170581/MAID_Test_vwxq9k.png

 While no seriously damaging information or images

was found through this method, it does not take much

extrapolation to see how in the wrong hands, a

determined attacker could scrape these images and find a

subset that the user would not want available online.

Proof of Concept
To demonstrate accessing original user assets, and to

protect the information and identify of Hinge users, a

limited proof of concept has been created using a free

account on the Cloudinary platform. After creating a free

account, a public domain image was uploaded to the

account’s media library.

 Next, using the Transformations dashboard, a new

transformation was created which adjusts image width to

461 pixels, moves the x axis to position 190 and the y

axis to position 0. The final transformation request looks

like the following “c_crop,w_461,x_190,y_0”. With Strict

Transformations not enabled, the transformation was

applied to the sample image . The new transformed image

was browsed at the footnoted address and is shown in

Figure 5.7

 To demonstrate the flaw with default Cloudinary

settings, the transformation parameter was removed

from the requested address. The original image was

browsed using the footnoted address and is shown in

Figure 6.8

8 MAID Test [Digital image]. (n.d.). Retrieved from https://res.cloudinary.com/maid-

test/image/upload/v1587170581/MAID_Test_vwxq9k.png

